FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Authors

  • Majid Amirfakhrian Iran, Islamic Republic of
  • Saba Sajadi Iran, Islamic Republic of
Abstract:

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Big Data Classification using Fuzzy K-Nearest Neighbor

Because of the massive increase in the size of the data it becomes troublesome to perform effective analysis using the current traditional techniques. Big data put forward a lot of challenges due to its several characteristics like volume, velocity, variety, variability, value and complexity. Today there is not only a necessity for efficient data mining techniques to process large volume of dat...

full text

Improved Fuzzy-Optimally Weighted Nearest Neighbor Strategy to Classify Imbalanced Data

Learning from imbalanced data is one of the burning issues of the era. Traditional classification methods exhibit degradation in their performances while dealing with imbalanced data sets due to skewed distribution of data into classes. Among various suggested solutions, instance based weighted approaches secured the space in such cases. In this paper, we are proposing a new fuzzy weighted near...

full text

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

full text

k-Nearest Neighbor Classification on Spatial Data

Classification of spatial data streams is crucial, since the training dataset changes often. Building a new classifier each time can be very costly with most techniques. In this situation, k-nearest neighbor (KNN) classification is a very good choice, since no residual classifier needs to be built ahead of time. KNN is extremely simple to implement and lends itself to a wide variety of variatio...

full text

K-Nearest Neighbor Classification Using Anatomized Data

This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...

full text

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2 (SPRING)

pages  109- 114

publication date 2013-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023